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1 Figure of merit the easy way

The figure of merit (FoM) for a quantum cascade (QC) laser (QCL) is a tool
used to maximize performance from a QC design. The FoM represents the
parameters from the QC laser gain coefficient that are affected by the quantum
design of a QC structure. The QCL gain coefficient is generally given as

gc = τu

(
1 − τ�

τu�

) 4πqz2
u�

λ0ε0neff Lp

1
δεu�

[ length
current ] (1)

where τu is the lifetime of the upper laser state, τ� is the lifetime of the lower
laser state, τu� is the transition time between the upper and lower laser state,
q is the electron charge, zu� is the optical dipole matrix element (having units
of length), λ0 is the free space wavelength of the lasing transition, neff is the
effective refractive index of the optical mode, Lp is the length of a single active-
injector region period, and δεu� is the full-width-at-half-maximum (FWHM) of
transition’s spontaneous emission (usually taken as the measured FWHM of a
QC structure’s electroluminescence, and in units of energy).

Since the optical dipole matrix element zu� and the energy state lifetimes τi

are QC design-dependent parameters, the most direct approach to deriving a
FoM is simply to pull these factors from the gain coefficient.

FoM = τu

(
1 − τ�

τu�

)
z2

u� [time×length2] (2)

While this is the simplest method for deriving a FoM, it has severe limitations
when practically implemented. QC lasers after all, comprise a system of coupled
quantum wells with significant intermixing (anticrossing) of quantum states; in
Eq. (2), we have assumed only a single upper laser state and a single lower laser
state.
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2 Intermixed lower energy states

For a proper calculation of the laser gain coefficient—and thus FoM—we must
include all optical transitions that might contribute photons into the lasing
mode. One might address this problem by perturbing the field at which the
FoM parameters are calculated, so as to prevent the upper and lower laser
states from intermixing with nearby states. However, the FoM itself is a field-
dependent parameter, so this approach is not ideal for calculating laser gain at
current turn-on (i.e., the design field).

To more broadly address the problem of multiple charge carrier transitions
contributing photons to the lasing mode, we need to consider individually each
potential transition’s contribution to the optical gain. As an example, let’s ex-
amine an optical transition with one upper energy state and two closely spaced,
intermixed lower energy states.

uτ

a,lτ
b,lτ

e-

We need to remember that each transition has its own spontaneous emission
spectrum with a finite FWHM; in intersubband heterostructure emitters, a good
estimate for δεu� is 10% of the transition energy. If the two transitions are close
enough together, the spontaneous emission will overlap in energy. Let’s assume
the spontaneous emission lineshape L for a transition with energy εu� has a
Lorentzian form.

L(εu�) =
1

( εu�−ε0
δεu�

)2 + 1
(3)

Here, ε0 is the lasing photon energy. Now, each transition will be able to
contribute photons into the lasing mode. The lasing wavelength will not be
exactly that of the dominant optical transition, but somewhere between the
two transitions. To find the lasing wavelength, we need to keep in mind that
the transitions might have different spontaneous emission rates. That is, one
transition might be able to emit photons faster than the other. The spontaneous
emission rate Wsp [ 1

time ] is the inverse of the spontaneous emission lifetime τsp

[time].

Wsp =
1

τsp
=

8π2q2

h̄ελ3
z2

u� [ 1
time ] (4)
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Notice that the rate, or the strength of the transition, is proportional to z2
u�. If

we add up the spontaneous emission spectrum of each transition multiplied by
z2

u�, the peak gain and thus the lasing energy ε0 can be found.

ε0 = max

(
L(εu�,a)z2

u�,a + L(εu�,b)z2
u�,b

)

= max

(∑
�

L(εu�)z2
u�

)
[energy] (5)

Now that we know what the lasing energy is going to be, let’s look at stim-
ulated emission for each of the transitions. Gain γ is simply the charge carrier
population difference N = Nu − N� [ 1

volume ] multiplied by the transition cross-
section σ [area].

γ(εu�) = N × σ(εu�) [ 1
length ] (6)

Let’s take each of the two contributions to γ individually. In a simple two level
optical transition system with an upper state pumped at rate Ru [ 1

volume×time ],
the carrier population difference is

N = Ruτu

(
1 − τ�

τu�

)
=

J

q

1
NpLp

[ 1
volume ] (7)

where J is pumping current density [ current
area ] and Np is the number of active

region-injector periods in the QCL active core. Note that N represents the
total population inversion from the set of all active regions in the active core.
In this way, N describes the active core gain region as a whole. If one wishes to
consider only population inversion for a single QC active region Δn, the value
is usually given in terms of sheet density.

Δn = N
Lp

Np
[ 1
area ] (8)
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The transition cross-section can be found by recognizing that, at threshold
where optical gain clamps,

γ(εu�) = αtotal = gcΓJth [ 1
length ] (9)

where αtotal is the total optical loss (waveguide and mirror loss), Γ is the gain
region confinement factor for the optical mode in the waveguide, and Jth is the
threshold current density [ current

area ]. By applying Eqs. (1), (6) and (7) to Eq. (9),
we get

σ(εu�) =
gcΓJth

N
= gcΓ

qNpLp

τu

(
1 − τ�

τu�

) =
Γq24πNpz

2
u�

λ0ε0neff δεu�
[area]. (10)

While this is close for the transition cross-section, we’ve got one correction to
make. The gain coefficient from Eq. (1) was derived assuming two discreet
states. To correct for this, we need to multiply the original gc by our lineshape
function L(εu�) from Eq. (3). Thus, we get the quantum cascade laser transition
cross-section.

σ(εu�) =
Γq24πNpz

2
u�

λ0ε0neff δεu�
L(εu�) [area] (11)

Note, again, this quantity describes the active core gain region as a whole.
Now, to find the FoM for our example with one upper energy state and two

closely spaced lower energy states, we can pull from the components of Eq. (6)
those elements that are influenced by quantum design.

FoM = τu

(
1 − τ�,a

τu�,a

)
z2

u�,aL(εu�,a) + τu

(
1 − τ�,b

τu�,b

)
z2

u�,bL(εu�,b)

=
∑

�

τu

(
1 − τ�

τu�

)
z2

u�L(εu�) [time×length2] (12)

3 Intermixed upper energy states

Calculating a proper FoM for energy transitions with upper state intermixing
takes consideration similar to the lower state intermixing case. However, with
upper state intermixing, we have an additional complication. We cannot assume
that each upper energy state is equally populated with electrons; the relative
populations of each upper state will influence the total gain contributed by that
transition.
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Recall that our basic relation for gain,

γ(εu�) = Ruτu

(
1 − τ�

τu�

)
σ(εu�) [ 1

length ] (13)

has a term Ru that describes the rate at which the upper energy level u is
populated with electrons. For a FoM calculation, where we are focused on
obtaining a number that allows us to compare different QC designs, we are
not concerned about the absolute pumping rate. Rather, what we need is a
weighting factor that reflects the relative population of each of the upper energy
states. Now, we can write our FoM as

FoM =
∑

u

Cuτu

(
1 − τ�

τu�

)
z2

u�L(εu�) [time×length2] (14)

with an upper state weighting factor Cu. As we’ve previously shown, the pump-
ing rate Ru of an energy state is proportional to the current density passing
through the state. In a QCL system with strong coupling between energy states,

Ju ≈ qnu

2τu
[ current

area ] (15)

where nu is the sheet density [ 1
area ] of electrons populating the state. Thus,

our weighting factor Cu ∝ nu/τu. The energy state population nu follows the
Fermi-Dirac distribution

nu = ns
1

e
− Δε

kB T + 1
[ 1
area ] (16)

where ns is the sheet density of electrons in the injector, Δε = εu−εF is approx-
imately the energy difference between the state u and the injector ground state,
kB is the Boltzmann constant, and T is temperature. We can ignore including a
factor for density of states if we assume low injector doping densities—generally
the case for QC lasers—and a reasonable operating temperature. Also un-
der these conditions, the Fermi-Dirac distribution is well-approximated by the
Boltzmann distribution, so

nu ∝ e
− Δε

kBT (17)
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and

Cu ∝ e
− Δε

kBT

τu
(18)

Because Cu is a weighting factor whose sum over all states represents a total
electron flux, the restriction

∑
u Cu = 1 must hold.

Cu =
e
− Δε

kBT

τu∑
u

e
− Δε

kB T

τu

(19)

Finally, we arrive at the general equation for FoM by combining Eqs. (12)
and (14), the generalized cases for transitions between intermixed upper and
lower energy states.

FoM =
∑
u,�

Cuτu

(
1 − τ�

τu�

)
z2

u�L(εu�) [time×length2] (20)
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